


国际肿瘤学杂志››2014,Vol. 41››Issue (12): 899-901.doi:10.3760/cma.j.issn.1673-422X.2014.12.007
出版日期:2014-12-24发布日期:2015-02-02通讯作者:吴斌,Email:wubintop@sina.cn基金资助:
浙江省自然科学基金(LY12H16032)
Online:2014-12-24Published:2015-02-02Contact:Wu Bin, Email: wubintop@sina.cn摘要:脑肿瘤干细胞(BTSC) 在肿瘤发生和发展过程中起着关键作用。在脑肿瘤肿瘤干细胞表面存在一群特殊的标志物,可以对干细胞、前体细胞和肿瘤干细胞进行分选。近年来研究比较多的肿瘤标志物有CD133、神经巢蛋白、高迁移率族蛋白组A1、A2B5等,对这些标志物的不断深入研究中取得了一定突破。
吴斌, 夏亮. 脑肿瘤干细胞标志物的研究进展[J]. 国际肿瘤学杂志, 2014, 41(12): 899-901.
WU Bin, XIA Liang. Progression of brain tumor stem cell markers[J]. Journal of International Oncology, 2014, 41(12): 899-901.
| [1] Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J]. Nature, 1994, 367(6464): 645648. [2] Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells[J]. Blood, 1997, 90(12): 50025012. [3] Shmelkov SV, Jun L, St Clair R, et al. Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133[J]. Blood, 2004, 103(6): 20552061. [4] Yu Y, Flint A, Dvorin EL, et al. AC1332, a novel isoform of human AC133 stem cell antigen[J]. J Biol Chem, 2002, 277(23): 2071120716. [5] Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells[J]. Nature, 2004, 432(7015): 396401. [6] Singh S, Dirks PB. Brain tumor stem cells: identification and concepts[J]. Neurosurg Clin N Am, 2007, 18(1): 3138, viii. [7] He H, Li MW, Niu CS. The pathological characteristics of glioma stem cell niches[J]. J Clin Neurosci, 2012, 19(1): 121127. [8] Kahlert UD, Bender NO, Maciaczyk D, et al. CD133/CD15 defines distinct cell subpopulations with differential in vitro clonogenic activity and stem cellrelated gene expression profile in in vitro propagated glioblastoma multiformederived cell line with a PNETlike component[J]. Folia Neuropathol, 2012, 50(4): 357368. [9] Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response[J]. Nature, 2006, 444(7120): 756760. [10] Neuzil J, Tomasetti M, Zhao Y, et al. Vitamin E analogs, a novel group of "mitocans," as anticancer agents: the importance of being redoxsilent[J]. Mol Pharmacol, 2007, 71(5): 11851199. [11] Wu A, Wiesner S, Xiao J, et al. Expression of MHC I and NK ligands on human CD133+ glioma cells: possible targets of immunotherapy[J]. J Neurooncol, 2007, 83(2): 121131. [12] Beier D, Hau P, Proescholdt M, et al. CD133(+) and CD133() glioblastomaderived cancer stem cells show differential growth characteristics and molecular profiles[J]. Cancer Res, 2007, 67(9): 40104015. [13] Joo KM, Kim SY, Jin X, et al. Clinical and biological implications of CD133positive and CD133negative cells in glioblastomas[J]. Lab Invest, 2008, 88(8): 808815. [14] Cattaneo E, McKay R. Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor[J]. Nature, 1990, 347(6295): 762765. [15] Tohyama T, Lee VM, Rorke LB, et al. Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumor cells[J]. Lab Invest, 1992, 66(3): 303313. [16] Rutka JT, Ivanchuk S, Mondal S, et al. Coexpression of nestin and vimentin intermediate filaments in invasive human astrocytoma cells[J]. Int J Dev Neurosci, 1999, 17(56): 503515. [17] Schiffer D, Manazza A, Tamagno I. Nestin expression in neuroepithelial tumors[J]. Neurosci Lett, 2006, 400(12): 8085. [18] Chang ZG, Yang LY, Wang W, et al. Determination of high mobility group A1 (HMGA1) expression in hepatocellular carcinoma: a potential prognostic marker[J]. Dig Dis Sci, 2005, 50(10): 17641770. [19] Manivannan P, Siddaraju N, Jatiya L, et al. Role of proangiogenic marker galectin3 in follicular neoplasms of thyroid[J]. Indian J Biochem Biophys, 2012, 49(5): 392394. [20] Goldammer T, Owens E, Brunner RM, et al.Assignment of syndecan 2 (SDC2)gene to cattle chromosome band 14q22 and thymus high mobility group box protein TOX (TOX)(2) gene to cattle chromosome band 14q17q18 by in situ hybridization[J]. Cytogenet Genome Res, 2002, 98(4): 311B. [21] Zhang Y, Ma T, Yang S, et al. Highmobility group A1 proteins enhance the expression of the oncogenic miR222 in lung cancer cells[J]. Mol Cell Biochem, 2011, 357(12): 363371. [22] Rho YS, Lim YC, Park IS, et al. High mobility group HMGI(Y) protein expression in head and neck squamous cell carcinoma[J]. Acta Otolaryngol, 2007, 127(1):7681. [23] Fan H, Guo H, Zhang IY, et al. The different HMGA1 expression of total population of glioblastoma cell line U251 and glioma stem cells isolated from U251[J]. Brain Res, 2011, 1384: 914. [24] Donato G, Martinez Hoyos J, Amorosi A, et al. High mobility group A1 expression correlates with the histological grade of human glial tumors[J]. Oncol Rep, 2004, 11(6): 12091213. [25] Ogawa S, Tokumoto Y, Miyake J, et al. Immunopanning selection of A2B5positive cells increased the differentiation efficiency of induced pluripotent stem cells into oligodendrocytes[J]. Neurosci Lett, 2011, 489(2): 7983. [26] Baracskay KL, Kidd GJ, Miller RH, et al. NG2positive cells generate A2B5positive oligodendrocyte precursor cells[J]. Glia, 2007, 55(10): 10011010. [27] Ogden AT, Waziri AE, Lochhead RA, et al. Identification of A2B5+CD133- tumorinitiating cells in adult human gliomas[J]. Neurosurgery, 2008, 62(2): 505514. [28] Tchoghandjian A, Baeza N, Colin C, et al. A2B5 cells from human glioblastoma have cancer stem cell properties[J]. Brain Pathol, 2010, 20(1): 211221. [29] Xu M, Yao Y, Hua W, et al. Mouse glioma immunotherapy mediated by A2B5+ GL261 cell lysatepulsed dendritic cells[J]. Neurooncol, 2014, 116(3): 497504. |
| [1] | 刘萍萍, 何学芳, 张翼, 杨旭, 张珊珊, 季一飞.原发性脑胶质瘤患者术后复发危险因素及预测模型构建[J]. 国际肿瘤学杂志, 2024, 51(4): 193-197. |
| [2] | 肖楠, 孙鹏飞.氧化应激在胶质瘤放化疗敏感性中的研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 357-361. |
| [3] | 孔春禹, 孙鹏飞.SLC7A11与胶质瘤[J]. 国际肿瘤学杂志, 2022, 49(10): 604-607. |
| [4] | 郭世豪, 任叶青, 郭庚.脑胶质瘤血管生成拟态分子机制[J]. 国际肿瘤学杂志, 2021, 48(6): 362-365. |
| [5] | 王宪伟, 史美燕, 王凤芹, 齐福, 王朝喆, 周飞.TSA上调miR-4298靶向抑制PADI4表达在诱导U251细胞凋亡中的作用[J]. 国际肿瘤学杂志, 2021, 48(4): 193-199. |
| [6] | 魏永健, 胡进静, 李汛.CDCA8与肿瘤发生发展及干细胞干性维持的关系[J]. 国际肿瘤学杂志, 2021, 48(4): 216-219. |
| [7] | 张雯, 胡伟国, 宋启斌.3D-ASL与DCE-MRI在脑胶质瘤复发与放射性脑坏死鉴别诊断中的价值[J]. 国际肿瘤学杂志, 2021, 48(10): 631-634. |
| [8] | 赵聪选, 于韬.胶质瘤相关基因的挖掘及预测[J]. 国际肿瘤学杂志, 2020, 47(5): 293-296. |
| [9] | 南阳, 钟跃.长非编码RNA在神经胶质瘤研究中的新进展[J]. 国际肿瘤学杂志, 2020, 47(2): 98-102. |
| [10] | 张雯, 宋启斌, 胡伟国.多模态磁共振成像在脑胶质瘤中的临床应用[J]. 国际肿瘤学杂志, 2020, 47(11): 686-690. |
| [11] | 陈亮, 秦军, 雷军荣, 刘俊, 王璐.miR-1254通过靶向CSF-1抑制胶质瘤细胞的增殖和侵袭能力[J]. 国际肿瘤学杂志, 2020, 47(10): 577-584. |
| [12] | 张千慧, 张洋, 宿伟鹏, 张宋安, 刘攀, 赵化荣.LSD1、MGMT和Ki-67在高级别胶质瘤中的表达及对预后的影响[J]. 国际肿瘤学杂志, 2019, 46(9): 519-525. |
| [13] | 衣琳, 邱实.紫草素抗胶质瘤效应及其作用机制[J]. 国际肿瘤学杂志, 2019, 46(8): 489-491. |
| [14] | 亢野,李建一,杨向红.三阴性乳腺癌干细胞研究进展[J]. 国际肿瘤学杂志, 2019, 46(6): 362-365. |
| [15] | 赵国丽1,2,刘恒铫1,张月英2 .微小RNA在肺癌干细胞中的调控作用[J]. 国际肿瘤学杂志, 2019, 46(4): 231-234. |
| 阅读次数 | ||||||
| 全文 |
|
|||||
| 摘要 |
|
|||||