


国际肿瘤学杂志››2025,Vol. 52››Issue (5): 304-308.doi:10.3760/cma.j.cn371439-20240920-00051
郑思齐1, 郭婷1, 王敬1, 田映红2(
), 张兴梅1(
)
收稿日期:2024-09-20修回日期:2024-11-08出版日期:2025-05-08发布日期:2025-06-24通讯作者:田映红,张兴梅 E-mail:510918051@qq.com;zxmray@hotmail.com基金资助:
Zheng Siqi1, Guo Ting1, Wang Jing1, Tian Yinghong2(
), Zhang Xingmei1(
)
Received:2024-09-20Revised:2024-11-08Online:2025-05-08Published:2025-06-24Contact:Tian Yinghong, Zhang Xingmei E-mail:510918051@qq.com;zxmray@hotmail.comSupported by:
摘要:
适配体是一类能与靶标分子高亲和特异性结合的短DNA/RNA单链寡核苷酸,具有高亲和特异性、相对分子质量小、低免疫原性等优点,已经被广泛应用于生物医学研究、临床诊断与治疗、生物传感器开发等领域。指数级富集配体系统进化技术(SELEX)是一种体外筛选技术,通过多轮循环筛选,富集与靶标高亲和特异性结合的适配体,在肿瘤治疗中具有广泛的应用。
郑思齐, 郭婷, 王敬, 田映红, 张兴梅. 适配体筛选技术及其在肿瘤治疗中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(5): 304-308.
Zheng Siqi, Guo Ting, Wang Jing, Tian Yinghong, Zhang Xingmei. Advances in aptamers screening and the applications in cancer therapy[J]. Journal of International Oncology, 2025, 52(5): 304-308.
| [1] | Qian S, Chang D, He S, et al. Aptamers from random sequence space: accomplishments, gaps and future considerations[J].Anal Chim Acta,2022,1196: 339511. DOI:10.1016/j.aca.2022.339511. |
| [2] | Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands[J].Nature,1990,346(6287): 818-822. DOI:10.1038/346818a0. |
| [3] | Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase[J].Science,1990,249(4968): 505-510. DOI:10.1126/science.2200121. pmid:2200121 |
| [4] | Wu L, Zhang Y, Wang Z, et al. Aptamer-based cancer cell analysis and treatment[J].ChemistryOpen,2022,11(10): e202200141. DOI:10.1002/open.202200141. |
| [5] | Zhang Y, Lai BS, Juhas M. Recent advances in aptamer discovery and applications[J].Molecules,2019,24(5): 941. DOI:10.3390/molecules24050941. |
| [6] | Zhu C, Feng Z, Qin H, et al. Recent progress of SELEX methods for screening nucleic acid aptamers[J].Talanta,2024,266(Pt 1): 124998. DOI:10.1016/j.talanta.2023.124998. |
| [7] | Lyu C, Khan IM, Wang Z. Capture-SELEX for aptamer selection: a short review[J].Talanta,2021,229: 122274. DOI:10.1016/j.talanta.2021.122274. |
| [8] | Zhu C, Yang G, Ghulam M, et al. Evolution of multi-functional capillary electrophoresis for high-efficiency selection of aptamers[J].Biotechnol Adv,2019,37(8): 107432. DOI:10.1016/j.biotechadv. 2019.107432. |
| [9] | Jing M, Bowser MT. Isolation of DNA aptamers using micro free flow electrophoresis[J].Lab Chip,2011,11(21): 3703-3709. DOI:10.1039/c1lc20461k. pmid:21947169 |
| [10] | Li Y, Tam WW, Yu Y, et al. The application of aptamer in biomarker discovery[J].Biomark Res,2023,11(1): 70. DOI:10. 1186/s40364-023-00510-8. |
| [11] | Sun X, Xie L, Qiu S, et al. Elucidation of CKAP4-remodeled cell mechanics in driving metastasis of bladder cancer through aptamer-based target discovery[J].Proc Natl Acad Sci U S A,2022,119(16): e2110500119. DOI:10.1073/pnas.2110500119. |
| [12] | Yu F, Chen J, Wang Z, et al. Screening aptamers for serine β- lactamase-expressing bacteria with precision-SELEX[J].Talanta,2021,224: 121750. DOI:10.1016/j.talanta.2020.121750. |
| [13] | Nikam PS, Palachandra S, Kingston JJ. In vitro selection and characterization of ssDNA aptamers by cross-over SELEX and its application for detection of S. Typhimurium[J].Anal Biochem,2022,656: 114884. DOI:10.1016/j.ab.2022.114884. |
| [14] | Duan Y, Zhang C, Wang Y, et al. Research progress of whole-cell-SELEX selection and the application of cell-targeting aptamer[J].Mol Biol Rep,2022,49(8): 7979-7993. DOI:10.1007/s11033-022-07317-0. pmid:35274201 |
| [15] | Wen K, Chen Y, Meng X, et al. A microfluidic dual-aptamer sandwich assay for rapid and cost-effective detection of recombinant proteins[J].Microchem J,2023,188: 108454. DOI:10.1016/j.microc.2023.108454. |
| [16] | Chang D, Wang Z, Flynn CD, et al. A high-dimensional microfluidic approach for selection of aptamers with programmable binding affinities[J].Nat Chem,2023,15(6): 773-780. DOI:10.1038/s41557-023-01207-z. pmid:37277648 |
| [17] | Qiao N, Li J, Wu X, et al. Speeding up in vitro discovery of structure-switching aptamers via magnetic cross-linking precipitation[J].Anal Chem,2019,91(21): 13383-13389. DOI:10.1021/acs.analchem.9b00081. pmid:31580650 |
| [18] | Liu J, Duan Q, Shao Z, et al. Formaldehyde cross-linking-assisted phase separation for protein aptamer selection[J].Anal Chem,2023,95(16): 6700-6708. DOI:10.1021/acs.analchem.3c00434. pmid:37052573 |
| [19] | Komarova N, Barkova D, Kuznetsov A. Implementation of high-throughput sequencing (HTS) in aptamer selection technology[J].Int J Mol Sci,2020,21(22): 8774. DOI:10.3390/ijms21228774. |
| [20] | Guo L, Song Y, Yuan Y, et al. Identification of nucleic acid aptamers against lactate dehydrogenase via SELEX and high-throughput sequencing[J].Anal Bioanal Chem,2021,413(17): 4427-4439. DOI:10.1007/s00216-021-03397-2. pmid:34028561 |
| [21] | Ferreira D, Barbosa J, Sousa DA, et al. Selection of aptamers against triple negative breast cancer cells using high throughput sequencing[J].Sci Rep,2021,11(1): 8614. DOI:10.1038/s41598-021-87998-y. |
| [22] | Yazdian-Robati R, Bayat P, Oroojalian F, et al. Therapeutic applications of AS1411 aptamer, an update review[J].Int J Biol Macromol,2020,155: 1420-1431. DOI:10.1016/j.ijbiomac.2019.11.118. pmid:31734366 |
| [23] | Mehrnia SS, Hashemi B, Mowla SJ, et al. Radiosensitization of breast cancer cells using AS1411 aptamer-conjugated gold nanoparticles[J].Radiat Oncol,2021,16(1): 33. DOI:10.1186/s13014-021-01751-3. |
| [24] | Huang BT, Lai WY, Yeh CL, et al. AptBCis1, an aptamer-cisplatin conjugate, is effective in lung cancer leptomeningeal carcinomatosis[J].ACS Nano,2024,18(41): 27905-27916. DOI:10.1021/acsnano.4c04680. |
| [25] | Donne R, Lujambio A. The liver cancer immune microenvironment: therapeutic implications for hepatocellular carcinoma[J].Hepatology,2023,77(5): 1773-1796. DOI:10.1002/hep.32740. |
| [26] | Wang Z, Wu C, Liu J, et al. Aptamer-mediated hollow MnO2for targeting the delivery of sorafenib[J].Drug Deliv,2023,30(1): 28-39. DOI:10.1080/10717544.2022.2149897. |
| [27] | Zhang Y, Bi J, Huang J, et al. Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications[J].Int J Nanomedicine,2020,15: 6917-6934. DOI:10.2147/ijn.S264498. |
| [28] | 张渊, 白芷玉, 李琪, 等. 外泌体在恶性肿瘤中的研究现状[J].国际肿瘤学杂志,2023,50(8): 484-488. DOI:10.3760/cma.j.cn371439-20230315-00092. |
| [29] | Han Q, Xie QR, Li F, et al. Targeted inhibition of SIRT6 via engineered exosomes impairs tumorigenesis and metastasis in prostate cancer[J].Theranostics,2021,11(13): 6526-6541. DOI:10. 7150/thno.53886. pmid:33995674 |
| [30] | Tran PHL, Wang T, Yin W, et al. Aspirin-loaded nanoexosomes as cancer therapeutics[J].Int J Pharm,2019,572: 118786. DOI:10.1016/j.ijpharm.2019.118786. |
| [31] | Yang Y, Sun X, Xu J, et al. Circular bispecific aptamer-mediated artificial intercellular recognition for targeted T cell immunotherapy[J].ACS Nano,2020,14(8): 9562-9571. DOI:10.1021/acsnano. 9b09884. pmid:32584540 |
| [32] | Peng JJ, Wang L, Li Z, et al. Metabolic challenges and interventions in CAR T cell therapy[J].Sci Immunol,2023,8(82): eabq3016. DOI:10.1126/sciimmunol.abq3016. |
| [33] | Liu CG, Wang Y, Liu P, et al. Aptamer-T cell targeted therapy for tumor treatment using sugar metabolism and click chemistry[J].ACS Chem Biol,2020,15(6): 1554-1565. DOI:10.1021/acschembio.0c00164. |
| [34] | Menon AP, Villanueva H, Meraviglia-Crivelli D, et al. CD3 aptamers promote expansion and persistence of tumor-reactive T cells for adoptive T cell therapy in cancer[J].Mol Ther Nucleic Acids,2024,35(2): 102198. DOI:10.1016/j.omtn.2024.102198. |
| [35] | Porreca I, Blassberg R, Harbottle J, et al. An aptamer-mediated base editing platform for simultaneous knockin and multiple gene knockout for allogeneic CAR-T cells generation[J].Mol Ther,2024,32(8): 2692-2710. DOI:10.1016/j.ymthe.2024.06.033. |
| [36] | Liu Y, Qian X, Ran C, et al. Aptamer-based targeted protein degradation[J].ACS Nano,2023,17(7): 6150-6164. DOI:10. 1021/acsnano.2c10379. |
| [37] | He S, Gao F, Ma J, et al. Aptamer-PROTAC conjugates (APCs) for tumor-specific targeting in breast cancer[J].Angew Chem Int Ed Engl,2021,60(43): 23299-23305. DOI:10.1002/anie.202107347. |
| [38] | Zhang L, Li L, Wang X, et al. Development of a novel PROTAC using the nucleic acid aptamer as a targeting ligand for tumor selective degradation of nucleolin[J].Mol Ther Nucleic Acids,2022,30: 66-79. DOI:10.1016/j.omtn.2022.09.008. |
| [39] | Wang Y, Yang G, Zhang X, et al. Antitumor effect of anti-c-Myc aptamer-based PROTAC for degradation of the c-Myc protein[J].Adv Sci (Weinh),2024,11(26): 2309639. DOI:10.1002/advs. 202309639. |
| [1] | 郭海洋, 洪永刚, 郝立强.铁死亡在结直肠癌中的作用及研究进展[J]. 国际肿瘤学杂志, 2025, 52(5): 319-324. |
| [2] | 余洋, 唐仕敏, 杨露, 李娜.pT2-3N0M0期胸段食管鳞状细胞癌治疗策略及预后影响因素研究进展[J]. 国际肿瘤学杂志, 2025, 52(1): 43-47. |
| [3] | 韩艺, 张同梅, 齐菲, 张泳.肺大细胞神经内分泌癌临床分子诊断和治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(7): 468-473. |
| [4] | 王子豪, 王宇, 杨鑫, 何艺, 莫兴奎, 袁涛.铁死亡在骨肉瘤中的分子机制及相关治疗的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 239-244. |
| [5] | 陶晋, 阚俊楠, 杨彩霞, 刘岩, 吕奕洁, 魏俊辉, 李祥林.锰基纳米材料在乳腺癌诊疗中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(10): 645-649. |
| [6] | 张悦宁, 刘倩, 李惠娴, 洪慧, 张金岭.软腭及食管多原发鳞状细胞癌鼻尖皮肤转移1例[J]. 国际肿瘤学杂志, 2024, 51(10): 667-669. |
| [7] | 施玥, 李晟, 冯继锋.急腹症风险下转移灶不可切除结直肠癌原发灶的处理方式选择[J]. 国际肿瘤学杂志, 2021, 48(11): 693-697. |
| [8] | 何剑波, 宁瑞玲, 蒋玮, 刘乾飞, 曾爱屏.重组人血管内皮抑制素优化给药策略联合化疗治疗晚期野生型NSCLC的临床观察[J]. 国际肿瘤学杂志, 2019, 46(8): 509-512. |
| [9] | 董方, 薛金才, 王云生, 刘勤江.甲状腺癌外照射放射治疗的变迁[J]. 国际肿瘤学杂志, 2019, 46(11): 641-648. |
| [10] | 王进, 汪靖, 廖世奇, 曾家豫.基于cell-SELEX的肿瘤核酸适配体筛选及其在肿瘤诊疗中的应用[J]. 国际肿瘤学杂志, 2018, 45(5): 304-307. |
| [11] | 周金,武杰,张惠博,陈敏.老年晚期非小细胞肺癌患者的治疗[J]. 国际肿瘤学杂志, 2018, 45(12): 756-759. |
| [12] | 彭勇华, 彭立, 梁志满, 张兴梅.适配子在肿瘤干细胞研究中的应用[J]. 国际肿瘤学杂志, 2017, 44(8): 672-675. |
| [13] | 陈达雷,沈艳艳,林传琦,王晓慧,史豪,郭贵龙.乳腺癌术后局部-区域复发的治疗方案[J]. 国际肿瘤学杂志, 2017, 44(12): 929-932. |
| [14] | 李颖,房晓萌,姜达,董倩,张增叶,郑飞.脑转移瘤合理治疗模式的Meta分析[J]. 国际肿瘤学杂志, 2015, 42(2): 103-108. |
| [15] | 夏晨, 庄志刚.细胞间隙连接蛋白在乳腺癌中的作用[J]. 国际肿瘤学杂志, 2014, 41(4): 273-276. |
| 阅读次数 | ||||||
| 全文 |
|
|||||
| 摘要 |
|
|||||